
Hyperbolic Graph Convolutional Neural Networks

Ines Chami∗‡ Rex Ying∗ † Christopher Ré† Jure Leskovec†

†Department of Computer Science, Stanford University
‡Institute for Computational and Mathematical Engineering, Stanford University

{chami, rexying, chrismre, jure}@cs.stanford.edu

October 11, 2019

Abstract

Graph convolutional neural networks (GCNs) map nodes in a graph to Euclidean embeddings, which have
been shown to incur a large distortion when embedding real-world graphs with scale-free or hierarchical structure.
Hyperbolic geometry offers an exciting alternative, as it enables embeddings with much smaller distortion. However,
extending GCNs to hyperbolic geometry presents several unique challenges. It is not clear how to define neural
network operations, such as feature transformation and aggregation, in hyperbolic space. Furthermore, since input
features are often Euclidean, it is unclear how to transform the features into hyperbolic embeddings with the right
amount of curvature. Here we propose Hyperbolic Graph Convolutional Neural Network (HYPERGCN), the first
inductive hyperbolic GCN that leverages both the expressiveness of GCNs and hyperbolic geometry to learn inductive
node representations for hierarchical and scale-free graphs. We derive GCNs operations in the hyperboloid model
of hyperbolic space and map Euclidean input features to embeddings in hyperbolic spaces with different trainable
curvatures at each layer. Experiments demonstrate that HYPERGCN learns embeddings that preserve hierarchical
structure, and leads to improved performance when compared to Euclidean analogs, even with very low dimensional
embeddings: compared to state-of-the-art GCNs, HYPERGCN achieves an error reduction of up to 63.1% in ROC
AUC for link prediction (LP) and of up to 47.5% in F1 score for node classification (NC), also improving state-of-the
art on the Pubmed dataset.

1 Introduction
Graph convolutional neural networks (GCNs) are state-of-the-art models for representation learning in graphs, where
nodes of the graph are mapped to points in Euclidean space [14, 20, 39, 43]. However, many real-world graphs, such as
protein interaction networks and social networks, often exhibit scale-free or hierarchical structure [7, 48] and Euclidean
embeddings, used in existing GCNs, have a high distortion when embedding these graph structures [6, 30]. In particular,
if volume in graphs is defined as the number of nodes within some distance of a center node, it grows exponentially
with respect to that distance for regular trees. However, the volume of balls in Euclidean space only grows polynomially
with respect to the radius, leading to high distortion tree embeddings [32, 33], while in hyperbolic space, this volume
grows exponentially.

Hyperbolic geometry offers an exciting alternative as it enables embeddings with much smaller distortion. However,
current hyperbolic embedding techniques only account for the graph structure and do not leverage rich node features [27].
For instance, Poincaré embeddings [28] capture the hyperbolic properties of real graphs by learning shallow embeddings
with hyperbolic distance metric and Riemannian optimization. Compared to deep alternatives such as GCNs, shallow
embeddings do not take into account features of nodes, lack scalability, and inductive capability. Furthermore, in
practice, optimization in hyperbolic space is challenging.

While extending GCNs to hyperbolic geometry has the potential to lead to more faithful embeddings and accurate
models, it also poses challenges: (1) input node features are usually Euclidean and it is not clear how to optimally use

∗Equal contribution

1

√
K

x

y

0

−11 −10 −9 −8 −7 −6

−1/K

0.5

1.0

1.5

2.0

2.5

3.0

3.5

d
(x
,y

)

Figure 1: Left: Poincaré disk geodesics (shortest path) connecting x and y for different curvatures. As curvature
(−1/K) decreases, the distance between x and y increases and the geodesics lines get closer to the origin. Center:
Hyperbolic distance vs curvature. Right: Poincaré geodesic lines.

them as input to hyperbolic neural networks, (2) it is not clear how to perform set aggregation, a key step in message
passing, in hyperbolic space, and (3) one needs to choose hyperbolic spaces with the right curvature at every layer of
GCN.

Here we propose Hyperbolic Graph Convolutional Networks (HYPERGCN), a class of graph representation learning
models that combine the expressiveness of GCNs and hyperbolic geometry to learn improved representations for
real-world hierarchical and scale-free graphs in inductive settings. In HYPERGCN, we solve the above challenges: (1)
We derive the core transformation of GCNs in the hyperboloid model of hyperbolic space to transform the input features
which lie in Euclidean space into hyperbolic embeddings. (2) We introduce a hyperbolic attention-based aggregation
scheme that captures node hierarchies. (3) We apply feature transformations in hyperbolic spaces of different trainable
curvatures at different layers, to learn hyperbolic embeddings that preserve the graph structure and a notion of hierarchy
for nodes in the graph.

The transformation between different hyperbolic spaces at different layers allows HYPERGCN to find the best
geometry of hidden layers to achieve low distortion and high separation of class labels. Our approach jointly trains the
weights for hyperbolic graph convolution operators, layer-wise curvatures and hyperbolic attention weights to learn
inductive embeddings that reflect hierarchies in graphs.

Compared to Euclidean GCNs, HYPERGCN offers improved expressiveness for scale-free or hierarchical graph
data. We demonstrate the efficacy of HYPERGCN on LP and NC tasks on a wide range of open datasets of graphs
which exhibit different extent of scale-free/hierarchical structure. HYPERGCN achieves new state-of-the-art results on
the standard PUBMED benchmark. Experiments show that HYPERGCN significantly outperforms all Euclidean-based
state-of-the-art graph neural networks on scale-free/hierarchical graphs and reduces error from 11.5% up to 47.5%
on NC tasks, and from 28.2% up to 63.1% on LP tasks. Finally, we also analyze the notion of hierarchy learned
by HYPERGCN and show how the geometry of embeddings transform from entirely Euclidean features to purely
hyperbolic embeddings.

2 Related Work
The problem of graph representation learning belongs to the field of geometric deep learning. There exist two major
types of approaches: transductive shallow embeddings and inductive GCNs.
Transductive, shallow embeddings. The first type of approach attempts to optimize node embeddings as parameters
by minimizing a reconstruction error. In other words, the mapping from nodes in graph to embeddings is an embedding
look-up. Examples include matrix factorization [23, 3] and random walk methods [29, 12]. Shallow embedding methods
have also been developed in hyperbolic geometry [28, 27] for reconstructing trees [33] and graphs [21, 5], or embedding
text [37]. However, shallow (Euclidean and hyperbolic) embedding methods have three major downsides: (1) They fail
to leverage rich node feature information, which can be crucial in tasks such as node classification. (2) These methods

2

are transductive, and therefore cannot be used for inference on unseen graphs. And, (3) they scale poorly, as the number
of model parameters grows linearly with the number of nodes.
(Euclidean) Graph Neural Networks. Instead of learning shallow embeddings, an alternative approach is to learn a
mapping from input graph structure as well as node features to embeddings, parameterized by neural networks [20, 24,
14, 39, 45, 43]. While various Graph Neural Network architectures resolve the disadvantages of shallow embeddings,
they generally embed nodes into a Euclidean space, which leads to a large distortion when embedding real-world graphs
with scale-free or hierarchical structure. Our work builds on GNNs and extends them to hyperbolic geometry.
Hyperbolic Neural Networks. Hyperbolic geometry has been applied to neural networks, to problems of computer
vision or natural language processing [17, 13, 36, 8]. More recently, hyperbolic neural networks [10] were proposed,
where core neural network operations are in hyperbolic space. In contrast to previous work, we derive core neural
network operations in a more stable model of hyperbolic space, and propose new operations for set aggregation, which
enable HYPERGCN to perform deep graph convolutions in hyperbolic space with trainable curvature.

3 Background
Problem setting. Without loss of generality we describe graph representation learning on a single graph. Let G = (V, E)
be a graph with vertex set V and edge set E , and let (x0,E

i)i∈V be d-dimensional input node features. We use the
superscript E to indicate that node features lie in a Euclidean space and use XH to denote hyperbolic features. The goal
in graph representation learning is to learn a mapping f which maps nodes to embedding vectors

f : (V, E , (x0,E
i)i∈V)→ Z ∈ R|V|×d

′
,

where d′ � |V|. These embeddings should capture both structural and semantic information and can then be used as
input for downstream tasks such as NC or LP.
Review of Graph Convolution Networks (GCNs). Let N (i) = {j : (i, j) ∈ E} denote the set of neighbors of i ∈ V ,
(W `, b`) be weights and bias parameters for layer `, and σ(·) be a non-linear activation function. The general GCN
message passing rule at layer ` for node i consists of

h`,Ei = W `x`−1,E
i + b` (feature transform) (1)

x`,Ei = σ(h`,Ei +
∑

j∈N (i)

wijh`,Ej) (neighborhood aggregation) (2)

where aggregation weights wij can be computed with different mechanisms [20, 14, 39]. The message passing is
performed for multiple layers to propagate messages over neighborhoods. Unlike shallow methods, GCNs leverage
node features and can be applied to unseen graphs in inductive settings.
The hyperboloid model of hyperbolic space. We review basic concepts of hyperbolic geometry that serve as building
blocks for HYPERGCN. Hyperbolic geometry is a non-Euclidean geometry with a constant negative curvature, where
curvature measures how a geometric object deviates from a flat plane (cf. [31] for an introduction to differential
geometry). Here, we work with the hyperboloid model for its simplicity and its numerical stability [27]. We generalize
results for curvature −1 to any constant negative curvature, as this allows us to learn curvature as a model parameter,
leading to better optimization (cf. Section 4.5 for more details).
Hyperboloid manifold. We first introduce our notation for the hyperboloid model of hyperbolic space. Let 〈., .〉L :
Rd+1 × Rd+1 → R denote the Minkowski inner product, 〈x,y〉L := −x0y0 + x1y1 + . . .+ xdyd. We denote Hd,K
as the hyperboloid manifold in d dimensions with constant negative curvature −1/K (K > 0), and TxHd,K the
(Euclidean) tangent space centered at point x

Hd,K := {x ∈ Rd+1 : 〈x,x〉L = −K,x0 > 0} TxHd,K := {v ∈ Rd+1 : 〈v,x〉L = 0}. (3)

Now for v and w in TxHd,K , gKx (v,w) := 〈v,w〉L is a Riemannian metric tensor [31] and (Hd,K , gKx) is a Riemannian
manifold with negative curvature −1/K. TxHd,K is a local, first-order approximation of the hyperbolic manifold
at x and the restriction of the Minkowski inner product to TxHd,K is positive definite. TxHd,K is useful to perform
Euclidean operations undefined in hyperbolic space and we denote ||v||L =

√
〈v,v〉L the norm of v ∈ TxHd,K .

3

Figure 2: HYPERGCN aggregation (Equation 9)

Geodesics and induced distances. Next, we introduce the notion of geodesics and distances in manifolds, which
are generalizations of shortest paths in graphs or straight lines in Euclidean geometry (Figure 1). Geodesics and
distance functions are particularly important in graph embedding algorithms, as a common optimization objective is
minimizing geodesic distances between connected nodes. Let x ∈ Hd,K and u ∈ TxHd,K . Assume u is unit-speed, i.e.
〈u,u〉L = 1. We have the following result.

Proposition 3.1. Let x ∈ Hd,K , u ∈ TxHd,K be unit-speed. The unique unit-speed geodesic γx→u(·) such that

γx→u(0) = x, γ̇x→u(0) = u is γKx→u(t) = cosh
(

t√
K

)
x +
√
Ksinh

(
t√
K

)
u, and the intrinsic distance function

between two points x,y in Hd,K is then

dKL (x,y) =
√
Karcosh(−〈x,y〉L/K). (4)

Exponential and logarithmic maps. Mapping between tangent space and hyperbolic space is done by the exponential
and logarithmic maps. Given x ∈ Hd,K and a tangent vector v ∈ TxHd,K , the exponential map expKx : TxHd,K →
Hd,K is the map that assigns to v the point expKx (v) := γ(1), where γ is the unique geodesic satisfying γ(0) = x and
γ̇(0) = v. The logarithmic map is the reverse map that maps back to the tangent space at x such that logKx (expKx (v)) =
v. In general Riemannian manifolds, these operations are only defined locally but in the hyperbolic space, they form a
bijection between the hyperbolic space and the tangent space at a point. We have the following direct expressions of the
exponential and the logarithmic maps which allow us to perform operations on points on the hyperboloid manifold by
mapping them to tangent spaces and and vice-versa.

Proposition 3.2. For x ∈ Hd,K , v ∈ TxHd,K and y ∈ Hd,K such that v 6= 0 and y 6= x, the exponential and
logarithmic maps of the hyperboloid model are given by

expKx (v) = cosh
(
||v||L√
K

)
x +
√
Ksinh

(
||v||L√
K

)
v
||v||L

, logKx (y) = dKL (x,y)
y + 1

K 〈x,y〉Lx
||y + 1

K 〈x,y〉Lx||L
.

4 Hyperbolic Graph Convolutional Networks
We introduce HYPERGCN, a generalization of inductive GCNs in hyperbolic geometry that benefits from the ex-
pressiveness of both graph neural networks and hyperbolic embeddings. We introduce the essential components of
HYPERGCN. First, since input features are often Euclidean, we derive a mapping from Euclidean features to hyperbolic
space. Next, we derive the two components of graph convolution: The analogs of the Euclidean feature transformation
and aggregation (Equations 1, 2) in the hyperboloid model. Finally, we introduce the HYPERGCN algorithm with
trainable curvature.

4

4.1 Mapping from Euclidean to hyperbolic spaces
HYPERGCN first maps input features to the hyperboloid manifold via the exp map. Let x0,E ∈ Rd denote input
Euclidean features. For instance, these features could be produced by pre-trained Euclidean neural networks. Let
o := {

√
K, 0, . . . , 0} ∈ Hd,K denote the north pole (origin) in Hd,K , which we use as a reference point to perform

tangent space operations. We have 〈(0,x0,E),o〉 = 0. Therefore, we interpret (0,x0,E) as a point in ToHd,K and use
Proposition 3.2 to map it to Hd,K with

x0,H = expKo ((0,x0,E)) =
(√

Kcosh
(
||x0,E ||2√

K

)
,
√
Ksinh

(
||x0,E ||2√

K

)
x0,E

||x0,E ||2

)
. (5)

4.2 Feature transform in hyperbolic space
The feature transform in Equation 1 is used in GCN to map the embedding space of one layer to the next layer embedding
space and capture large neighborhood structures. We now want to learn transformations of points on the hyperboloid
manifold. However, there is no notion of vector space structure in hyperbolic space. We build upon Hyperbolic Neural
Network (HNN) [10] and derive transformations in the hyperboloid model. The main idea is to leverage the exp and
log maps in Corollary 3.2 so that we can use the tangent space ToHd,K to perform Euclidean transformations.

Hyperboloid linear transform. Linear transformation requires a multiplication of the embedding vector by a
weight matrix, followed by bias translation. To compute matrix vector multiplication, we first use the log map to project
hyperbolic points xH to ToHd,K . Thus the matrix representing the transform is defined on the tangent space, which is
Euclidean and isomorphic to Rd. We then project the vector back to the manifold using the exponential map. Let W be
a d′ × d weight matrix, we define the hyperboloid matrix mutiplication as

W ⊗K xH := expKo (W logKo (xH)), (6)

where logKo (·) is on Hd,K and expKo (·) maps to Hd′,K . In order to perform bias addition, we use a result from the
HNN model and define b as an Euclidean vector located at ToHd,K . We then parallel transport b to the tangent space
of the hyperbolic point of interest and map it to the manifold. The hyperboloid bias addition is then defined as

xH ⊕K b := expKxH(PKo→xH (b)), (7)

where PKo→xH (·) is the parallel transport from ToHd
′,K to TxHHd′,K (c.f. Appendix A for details).

4.3 Neighborhood aggregation on the hyperboloid manifold
Aggregation (Equation 2) is a crucial step in GCNs as it captures neighborhood structures and features with message
passing. Suppose that xi aggregates information from its neighbors (xj)j∈N (i) with weights (wj)j∈N (i). Mean
aggregation in Euclidean GCN computes the weighted average

∑
j∈N (i) wjxj . An analog of mean aggregation in

hyperbolic space is the Frechet mean [9], which has no closed form solution. Instead, we propose to perform aggregation
in tangent spaces using hyperbolic attention.
Attention based aggregation. Attention in GCNs learns a notion of neighbors’ importance, and aggregates neighbors’
messages according to their importance to the center node. However, attention on Euclidean embeddings does not take
into account the nodes’ hierarchies. Thus, we further propose hyperbolic attention-based aggregation. Given hyperbolic
embeddings (xHi ,xHj), we first map xHi and xHj to the tangent space of the origin to compute attention weights wij
with concatenation and Euclidean Multi-layer Percerptron (MLP). We then propose a hyperbolic aggregation to average
nodes’ representations

wij = SOFTMAXj∈N (i)(MLP(logKo (xHi)||logKo (xHj))) (8)

AGGK(xH)i = expKxH
i

(∑
j∈N (i)

wij logKxH
i

(xHj)
)
. (9)

Note that our proposed aggregation is directly performed in the tangent space of each center point xHi , as this is where
the Euclidean approximation is best (cf. Figure 2). We show in our ablation experiments (cf. Table 2) that this local

5

(a) GCN layers. (b) HYPERGCN layers. (c) GCN (left), HYPERGCN (right).

Figure 3: Visualization of embeddings for LP on DISEASE and NC on CORA (visualization on the Poincaré disk for
HYPERGCN). (a) GCN embeddings in first and last layers for DISEASE LP hardly capture hierarchy (depth indicated
by color). (b) In contrast, HYPERGCN preserves node hierarchies. (c) On CORA NC, HYPERGCN leads to better class
separation (indicated by different colors).

aggregation outperforms aggregation in tangent space at the origin (AGGo), due to the fact that relative distances have
lower distortion with our approach.
Non-linear activation with different curvatures. Analogous to Euclidean aggregation (Equation 2), HYPERGCN
uses a non-linear activation function, σ(·) such that σ(0) = 0, to learn non-linear transformations. Given hyperbolic
curvatures−1/K`−1,−1/K` at layer `−1 and ` respectively, we introduce a hyperbolic non-linear activation σ⊗

K`−1,K`

with different curvatures. This step is crucial as it allows us to smoothly vary curvature at each layer. More concretely,
HYPERGCN applies the Euclidean non-linear activation in ToHd,K`−1 and then maps back to Hd,K`

σ⊗
K`−1,K` (xH) = expK`

o (σ(logK`−1
o (xH))). (10)

Note that in order to apply the exponential map at o, we need to make sure that points are located in the corresponding
tangent space. Fortunately, tangent spaces of the north pole are shared across hyperboloid manifolds of the same
dimension that have different curvatures, making Equation 10 mathematically correct.

4.4 HYPERGCN architecture
Having introduced all the building blocks of HYPERGCN, we now summarize the model architecture. Given a graph
G = (V, E) and input Euclidean features (x0,E)i∈V , the first layer of HYPERGCN is a mapping from Euclidean to
hyperbolic space detailed in Section 4.1. HYPERGCN stacks multiple hyperbolic graph convolution layers. At each
layer HYPERGCN transforms and aggregates neighbour’s embeddings in the tangent space of the center node and
projects the result to a hyperbolic space with different curvature. Hence the message passing in a HYPERGCN layer is

h`,Hi = (W ` ⊗K`−1 x`−1,H
i)⊕K`−1 b` (hyperbolic feature transform) (11)

y`,Hi = AGGK`−1(h`,H)i (attention-based neighborhood aggregation) (12)

x`,Hi = σ⊗
K`−1,K` (y`,Hi) (non-linear activation with different curvatures) (13)

where, −1/K`−1 and −1/K` are the hyperbolic curvatures at layer `− 1 and ` respectively. Hyperbolic embeddings
(xL,H)i∈V at the last layer with curvature −1/KL can then be used to predict node attributes or links. For LP, we use
the Fermi-Dirac decoder [22, 28], a generalization of sigmoid, to compute probability scores for edges

p((i, j) ∈ E|xL,Hi ,xL,Hj) =
[
e(dKL
L (xL,H

i
,xL,H

j
)2−r)/t + 1

]−1
, (14)

where dKL

L (·, ·) is the hyperbolic distance and r and t are hyper-parameters. We then train HYPERGCN by minimizing
the cross-entropy loss using negative sampling.

For NC, we map the output of the last HYPERGCN layer to the tangent space of the origin with the logarithmic
map logKL

o (·) and then perform Euclidean multinomial logistic regression. Note that another possibility is to directly

6

Dataset DISEASE DISEASE-M HUMAN PPI AIRPORT PUBMED CORA
Hyperbolicity δ δ = 0 δ = 0 δ = 1 δ = 1 δ = 3.5 δ = 11
Method LP NC LP NC LP NC LP NC LP NC LP NC

Sh
al

lo
w

EUC 59.8 ± 2.0 32.5 ± 1.1 - - - - 92.0 ± 0.0 60.9 ± 3.4 83.3 ± 0.1 48.2 ± 0.7 82.5 ± 0.3 23.8 ± 0.7
HYP [28] 63.5 ± 0.6 45.5 ± 3.3 - - - - 94.5 ± 0.0 70.2 ± 0.1 87.5 ± 0.1 68.5 ± 0.3 87.6 ± 0.2 22.0 ± 1.5
EUC-MIXED 49.6 ± 1.1 35.2 ± 3.4 - - - - 91.5 ± 0.1 68.3 ± 2.3 86.0 ± 1.3 63.0 ± 0.3 84.4 ± 0.2 46.1 ± 0.4
HYP-MIXED 55.1 ± 1.3 56.9 ± 1.5 - - - - 93.3 ± 0.0 69.6 ± 0.1 83.8 ± 0.3 73.9 ± 0.2 85.6 ± 0.5 45.9 ± 0.3

N
N MLP 72.6 ± 0.6 28.8 ± 2.5 55.3 ± 0.5 55.9 ± 0.3 67.8 ± 0.2 55.3±0.4 89.8 ± 0.5 68.6 ± 0.6 84.1 ± 0.9 72.4 ± 0.2 83.1 ± 0.5 51.5 ± 1.0

HNN[10] 75.1 ± 0.3 41.0 ± 1.8 60.9 ± 0.4 56.2 ± 0.3 72.9 ± 0.3 59.3 ± 0.4 90.8 ± 0.2 80.5 ± 0.5 94.9 ± 0.1 69.8 ± 0.4 89.0 ± 0.1 54.6 ± 0.4

G
N

N

GCN[20] 64.7 ±0.5 69.7 ± 0.4 66.0 ± 0.8 59.4 ± 3.4 77.0 ± 0.5 69.7 ± 0.3 89.3 ± 0.4 81.4 ± 0.6 91.1 ± 0.5 78.1 ± 0.2 90.4 ± 0.2 81.3 ± 0.3
GAT [39] 69.8 ±0.3 70.4 ± 0.4 69.5 ± 0.4 62.5 ± 0.7 76.8 ± 0.4 70.5 ± 0.4 90.5 ± 0.3 81.5 ± 0.3 91.2 ± 0.1 79.0 ± 0.3 93.7 ± 0.1 83.0 ± 0.7
SAGE [14] 65.9 ± 0.3 69.1 ± 0.6 67.4 ± 0.5 61.3 ± 0.4 78.1 ± 0.6 69.1 ± 0.3 90.4 ± 0.5 82.1 ± 0.5 86.2 ± 1.0 77.4 ± 2.2 85.5 ± 0.6 77.9 ± 2.4
SGC [42] 65.1 ± 0.2 69.5 ± 0.2 66.2 ± 0.2 60.5 ± 0.3 76.1 ± 0.2 71.3 ± 0.1 89.8 ± 0.3 80.6 ± 0.1 94.1 ± 0.0 78.9 ± 0.0 91.5 ± 0.1 81.0 ± 0.1

O
ur

s HYPERGCN 90.8 ± 0.3 74.5 ± 0.9 78.1 ± 0.4 72.2 ± 0.5 84.5 ± 0.4 74.6 ± 0.3 96.4 ± 0.1 90.6 ± 0.2 96.3 ± 0.0 80.3 ± 0.3 92.9 ± 0.1 79.9 ± 0.2

(%) ERR RED -63.1% -13.8% -28.2% -25.9% -29.2% -11.5% -60.9% -47.5% -27.5% -6.2% +12.7% +18.2%

Table 1: ROC AUC for Link Prediction (LP) and F1 score for Node Classification (NC) tasks. For inductive datasets,
we only evaluate inductive methods since shallow methods cannot generalize to unseen nodes/graphs. We report graph
hyperbolicity values δ (lower is more hyperbolic).

classify points on the hyperboloid manifold using the hyperbolic multinomial logistic loss [10]. This method performs
similarly to Euclidean classification (cf. [10] for an empirical comparison). Finally, we also add a LP regularization
objective in NC tasks, to encourage embeddings at the last layer to preserve the graph structure.

4.5 Trainable curvature
We further analyze the effect of trainable curvatures in HYPERGCN. Theorem 4.1 (proof in Appendix B) shows that
assuming infinite precision, for the LP task, we can achieve the same performance for varying curvatures with an affine
invariant decoder, by scaling embeddings.

Theorem 4.1. For any hyperbolic curvatures −1/K,−1/K ′ < 0, for any node embeddings H = {hi} ⊂ Hd,K of

a graph G, we can find H ′ ⊂ Hd,K′ , H ′ = {h′i|h′i =
√

K′

K hi}, such that the reconstructed graph from H ′ via the
Fermi-Dirac decoder is the same as the reconstructed graph from H , with different decoder parameters (r, t) and
(r′, t′).

However, despite the same expressive power, adjusting curvature at every layer is important for good performance in
practice due to factors in limited machine precision and normalization. First, with very low or very high curvatures, the
scaling factor K

′

K in Theorem 4.1 becomes close to 0 or very large, and limited machine precision results in large error
due to rounding. This is supported by Figure 4 and Table 2 where adjusting and training curvature lead to significant
performance gain. Second, the norm of hidden layers that achieve the same local minimum in training also vary by
a factor of

√
K. In practice, however, optimization is much more stable when the values are normalized [15]. In the

context of HYPERGCN, trainable curvature provides us a natural way to learn embeddings of the right scale at each
layer, improving optimization. See Figure 4 for the effect of decreasing curvature (K = +∞ is the Euclidean case) on
LP performance.

5 Experiments
We comprehensively evaluate our experiments on a variety of networks, on both node classification and link prediction
tasks, in transductive and inductive settings. We compare the performance of HYPERGCN against a variety of shallow
and GNN-based baselines. We further use visualizations to investigate the expressiveness of HYPERGCN in link
prediction tasks, and also demonstrate its ability to learn GCN functions that leverage the notion of hierarchy of nodes
in graphs.

7

5.1 Experimental setup
Datasets. We use a variety of open transductive and inductive datasets that we detail below (more details in the
Appendix). We compute Gromov’s δ−hyperbolicity [1, 26, 16], a notion from group theory that measures how tree-like
a graph is. The lower δ, the more hyperbolic is the graph dataset δ = 0 for trees. We conjecture that HYPERGCN
works better on graphs with small δ-hyperbolicity.

1. Citation networks. CORA [34] and PUBMED [25] are standard benchmarks describing citation networks where
nodes represent scientific papers, edges are citations between them, and node labels are academic (sub)areas. CORA
contains 2,708 machine learning papers divided into 7 classes while PUBMED has 19,717 publications in the area of
medicine grouped in 3 classes.

2. Disease propagation tree. We simulate the SIR disease spreading model [2], where the label of a node is whether
the node was infected or not. Based on the model, we build tree networks, where the node features indicate the
susceptibility to the disease. We build transductive and inductive variants of this dataset, namely DISEASE and
DISEASE-M, with 1,044 and 43193 nodes respectively.

3. Protein-protein interactions (PPI) networks. We compose a dataset of PPI networks containing the human
proteins in all tissues [35], where edges represent interactions between proteins. The node classification task is to
predict the stem cell growth rate after 19 days [38]. The 16-dimensional feature for each node represents the RNA
expression levels of the corresponding proteins, and we perform log transform on features.

4. Flight networks. AIRPORT is a transductive dataset where nodes represent airports and edges represent the airline
routes as from OpenFlights.org. Compared to previous compilations [47], this dataset has larger size (2236 nodes).
We also augment the graph with geographic information (longitude, latitude and altitude), and GDP of the country
where the airport belongs to. We use the population of the country where the airport belongs to as the label for node
classification.

Baselines. For shallow methods, we consider Euclidean embeddings (EUC) and Poincaré embeddings (HYP) [28]. We
conjecture that Poincaré embeddings will outperform Euclidean embeddings on hierarchical graphs. For fair comparison
with HYPERGCN which leverages node features, we also consider EUC-MIXED and HYP-MIXED baselines, where we
concatenate the corresponding shallow embeddings with node features, followed by a MLP to predict node labels or
links. For state-of-the-art Euclidean GNN models, we consider GCN [20], GraphSAGE (SAGE) [14], Graph Attention
Networks (GAT) [39] and Simplified Graph Convolution (SGC) [42]1. We also consider feature-based approaches:
MLP and its hyperbolic variant (HNN) [10], which does not utilize the graph structure.
Training. For all methods, we perform a hyper-parameter search on validation set over initial learning rate, patience
for learning rate decay, weight decay, dropout2, number of layers, and activation functions. We measure performance
on the final test set over 10 random seeds. For fairness, we also control the number of dimensions to be the same
(16) for all methods. We optimize all models with Adam [18], except Poincaré embeddings which are optimized
with RiemannianSGD [4, 46]. More details are included in the Appendix. We open source our implementation3 of
HYPERGCN and baselines.

Evaluation metric. In transductive LP tasks, we randomly split edges into 85/5/10% for training, validation and test
sets. For transductive NC, we use 30/10/60% split for nodes in all datasets, except CORA and PUBMED where we
use standard splits [44, 20] with 20 examples per class for training. One of the main advantages of HYPERGCN over
related hyperbolic graph embedding is its inductive capability. For inductive tasks, the split is performed across graphs.
All nodes/edges in training graphs are considered the training set, and the model is asked to predict node class or unseen
links for test graphs. Following previous works, we evaluate link prediction by measuring area under the ROC curve on
the test set and evaluate node classification performance by measuring F1 score, except for CORA and PUBMED where
we report accuracy to compare our results to the literature.

1The equivalent of GCN in link prediction is GAE [19]. We did not compare link prediction GNNs based on shallow embeddings such as [47]
since they are not inductive.

2HYPERGCN uses DropConnect [40], as described in Appendix C.
3Code available at https://github.com/ines-chami/hypergcn. We provide HYPERGCN implementations for the hyperboloid and the Poincaré

model. In our experiments, we find that both models give similar performance but the hyperboloid model offers more stable optimization. This
statement is also supported by the fact that the Poincaré distance function is numerically unstable due to the denominator term [27].

8

https://github.com/ines-chami/hypergcn

−3 −2 −1 0 1
−log(K)

0.5

0.6

0.7

0.8

0.9

R
O

C
A

U
C

Figure 4: Decreasing curvature (−1/K) improves link
prediction performance on DISEASE.

Method DISEASE AIRPORT

HYPERGCN 78.4 ± 0.3 91.8 ± 0.3
HYPERGCN-ATTo 80.9 ± 0.4 92.3 ± 0.3
HYPERGCN-ATT 82.0 ± 0.2 92.5 ± 0.2

HYPERGCN-C 89.1 ± 0.2 94.9 ± 0.3
HYPERGCN-ATT-C 90.8 ± 0.3 96.4 ± 0.1

Table 2: ROC AUC for link prediction on AIRPORT and
DISEASE datasets.

5.2 Results
Table 1 reports the performance of HYPERGCN in comparison to baseline methods. HYPERGCN works best in
inductive scenarios where both node features and network topology play an important role. The performance gain of
HYPERGCN with respect to Euclidean GNN models is correlated with graph hyperbolicity. HYPERGCN achieves
an average of 45.4% (LP) and 12.3% (NC) error reduction compared with the best deep baselines for graphs with
high hyperbolicity (low δ), suggesting that GNNs can significantly benefit from hyperbolic geometry, especially in
link prediction tasks. Furthermore, the performance gap between HYPERGCN and HNN suggests that neighborhood
aggregation has been effective in learning node representations in graphs. For example, in disease spread datasets, both
Euclidean attention and hyperbolic geometry lead to significant improvement of HYPERGCN over other baselines.
This can be explained by the fact that in disease spread trees, parent nodes contaminate their children. HYPERGCN can
successfully model these asymmetric and hierarchical relationships with hyperbolic attention and improves performance
over all baselines.

On the CORA dataset with low hyperbolicity, HYPERGCN does not outperform Euclidean GNNs, suggesting
that Euclidean geometry is better for its underlying graph structure. However, for small dimensions, HYPERGCN is
still significantly more effective than GCN even with CORA. Figure 3c shows 2-dimensional HYPERGCN and GCN
embeddings trained with LP objective, where colors denote the label class. HYPERGCN achieves much better label
class separation.

5.3 Analysis
Ablations. We further analyze the effect of proposed components in HYPERGCN, namely hyperbolic attention (ATT)
and trainable curvature (C) on AIRPORT and DISEASE datasets in Table 2. We observe that both attention and trainable
curvature lead to performance gains over HYPERGCN with fixed curvature and no attention. Furthermore, our attention
model ATT outperforms ATTo (aggregation in tangent space at o) and we conjecture that this is because the local
Euclidean average is a better approximation near the center point rather than near o. Finally, the addition of both ATT
and C improves performance even further, suggesting that both components are important in the HYPERGCN model.
Visualizations. We first visualize the GCN and HYPERGCN embeddings at the first and last layers in Figure 3. We
train HYPERGCN with 3-dimensional hyperbolic embeddings and map them to the Poincaré disk which is better for
visualization. In contrast to GCN, the tree structure is preserved in HYPERGCN, where nodes close to the center are
of higher hierarchy in the tree. HYPERGCN smoothly transforms Euclidean features to Hyperbolic embeddings that
preserve node hierarchies.

Figure 5 shows the attention weights in the 2-hop neighborhood of a center node (red) for the DISEASE dataset. The
red node is the node where we compute attention. The darkness of the color for other nodes denotes their hierarchy.
The attention weights for nodes in the neighborhood are visualized by the intensity of edges. We observe that in
HYPERGCN the center node pays more attention to its (grand)parent. In contrast to Euclidean GAT, our aggregation
with attention in hyperbolic space allows us to pay more attention to nodes with high hierarchy. Such attention is crucial
to good performance in DISEASE, because only sick parents will propagate the disease to their children.

9

Figure 5: Attention: Euclidean GAT (left), HYPERGCN (right). Each graph represents a 2-hop neighborhood of the
DISEASE-M dataset.

6 Conclusion
We introduced HYPERGCN, a novel architecture that learns hyperbolic embeddings using graph convolutional networks.
In HYPERGCN, the Euclidean input features are successively mapped to embeddings in hyperbolic spaces with trainable
curvatures at every layer. HYPERGCN achieves new state-of-the-art in learning embeddings for real-world hierarchical
and scale-free graphs.

Acknowledgments

Jure Leskovec is a Chan Zuckerberg Biohub investigator. This research has been supported in part by NSF OAC-1835598,
DARPA MCS, DARPA ASED, ARO MURI, Boeing, Docomo, Hitachi, Huawei, JD, Siemens and Stanford Data Science
Initiative. We gratefully acknowledge the support of DARPA under Nos. FA87501720095 (D3M), FA86501827865
(SDH), and FA86501827882 (ASED); NIH under No. U54EB020405 (Mobilize), NSF under Nos. CCF1763315
(Beyond Sparsity), CCF1563078 (Volume to Velocity), and 1937301 (RTML); ONR under No. N000141712266
(Unifying Weak Supervision); the Moore Foundation, NXP, Xilinx, LETI-CEA, Intel, Microsoft, NEC, Toshiba, TSMC,
ARM, Hitachi, BASF, Accenture, Ericsson, Qualcomm, Analog Devices, the Okawa Foundation, American Family
Insurance, Google Cloud, Swiss Re, and members of the Stanford DAWN project: Teradata, Facebook, Google, Ant
Financial, NEC, VMWare, and Infosys. The U.S. Government is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright notation thereon. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors and do not necessarily reflect the views, policies, or
endorsements, either expressed or implied, of DARPA, NIH, ONR, or the U.S. Government.

References
[1] Aaron B Adcock, Blair D Sullivan, and Michael W Mahoney. Tree-like structure in large social and information

networks. In 2013 IEEE 13th International Conference on Data Mining, pages 1–10. IEEE, 2013.

[2] Roy M Anderson and Robert M May. Infectious diseases of humans: dynamics and control. Oxford university
press, 1992.

[3] Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps and spectral techniques for embedding and clustering. In
Advances in neural information processing systems, pages 585–591, 2002.

[4] Silvere Bonnabel. Stochastic gradient descent on riemannian manifolds. IEEE Transactions on Automatic Control,
2013.

[5] Benjamin Paul Chamberlain, James Clough, and Marc Peter Deisenroth. Neural embeddings of graphs in
hyperbolic space. arXiv preprint arXiv:1705.10359, 2017.

[6] Wei Chen, Wenjie Fang, Guangda Hu, and Michael W Mahoney. On the hyperbolicity of small-world and treelike
random graphs. Internet Mathematics, 9(4):434–491, 2013.

10

[7] Aaron Clauset, Cristopher Moore, and Mark EJ Newman. Hierarchical structure and the prediction of missing
links in networks. Nature, 453(7191):98, 2008.

[8] Bhuwan Dhingra, Christopher J Shallue, Mohammad Norouzi, Andrew M Dai, and George E Dahl. Embedding
text in hyperbolic spaces. NAACL HLT, 2018.

[9] Maurice Fréchet. Les éléments aléatoires de nature quelconque dans un espace distancié. In Annales de l’institut
Henri Poincaré, 1948.

[10] Octavian Ganea, Gary Bécigneul, and Thomas Hofmann. Hyperbolic neural networks. In NeurIPS, 2018.

[11] Octavian-Eugen Ganea, Gary Bécigneul, and Thomas Hofmann. Hyperbolic entailment cones for learning
hierarchical embeddings. In International Conference on Machine Learning ICML, 2018.

[12] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In KDD, 2016.

[13] Caglar Gulcehre, Misha Denil, Mateusz Malinowski, Ali Razavi, Razvan Pascanu, Karl Moritz Hermann, Peter
Battaglia, Victor Bapst, David Raposo, Adam Santoro, et al. Hyperbolic attention networks. In ICLR, 2019.

[14] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In NIPS, 2017.

[15] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing internal
covariate shift. In ICML, 2015.

[16] Edmond Jonckheere, Poonsuk Lohsoonthorn, and Francis Bonahon. Scaled gromov hyperbolic graphs. Journal of
Graph Theory, 2008.

[17] Valentin Khrulkov, Leyla Mirvakhabova, Evgeniya Ustinova, Ivan Oseledets, and Victor Lempitsky. Hyperbolic
image embeddings. arXiv preprint arXiv:1904.02239, 2019.

[18] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

[19] Thomas N Kipf and Max Welling. Variational graph auto-encoders. NIPS Workshop on Bayesian Deep Learning,
2016.

[20] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In ICLR,
2017.

[21] Robert Kleinberg. Geographic routing using hyperbolic space. In IEEE International Conference on Computer
Communications, 2007.

[22] Dmitri Krioukov, Fragkiskos Papadopoulos, Maksim Kitsak, Amin Vahdat, and Marián Boguná. Hyperbolic
geometry of complex networks. Physical Review E, 2010.

[23] Joseph B Kruskal. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychome-
trika, 1964.

[24] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence neural networks. In
ICLR, 2016.

[25] Galileo Namata, Ben London, Lise Getoor, Bert Huang, and UMD EDU. Query-driven active surveying for
collective classification. 2012.

[26] Onuttom Narayan and Iraj Saniee. Large-scale curvature of networks. Physical Review E, 84(6):066108, 2011.

[27] Maximilian Nickel and Douwe Kiela. Learning continuous hierarchies in the lorentz model of hyperbolic geometry.
ICML, 2018.

11

[28] Maximillian Nickel and Douwe Kiela. Poincaré embeddings for learning hierarchical representations. In NIPS,
2017.

[29] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social representations. In
Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, pages
701–710. ACM, 2014.

[30] Erzsébet Ravasz and Albert-László Barabási. Hierarchical organization in complex networks. Physical review E,
2003.

[31] Joel W Robbin and Dietmar A Salamon. Introduction to differential geometry.

[32] Frederic Sala, Chris De Sa, Albert Gu, and Christopher Re. Representation tradeoffs for hyperbolic embeddings.
In ICML, 2018.

[33] Rik Sarkar. Low distortion delaunay embedding of trees in hyperbolic plane. In International Symposium on
Graph Drawing, 2011.

[34] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad. Collective
classification in network data. AI magazine, 2008.

[35] Damian Szklarczyk, John H Morris, Helen Cook, Michael Kuhn, Stefan Wyder, Milan Simonovic, Alberto
Santos, Nadezhda T Doncheva, Alexander Roth, Peer Bork, et al. The string database in 2017: quality-controlled
protein–protein association networks, made broadly accessible. Nucleic acids research, 2016.

[36] Yi Tay, Luu Anh Tuan, and Siu Cheung Hui. Hyperbolic representation learning for fast and efficient neural
question answering. In WSDM, 2018.

[37] Alexandru Tifrea, Gary Becigneul, and Octavian-Eugen Ganea. Poincaré glove: Hyperbolic word embeddings. In
ICLR, 2019.

[38] Joyce van de Leemput, Nathan C Boles, Thomas R Kiehl, Barbara Corneo, Patty Lederman, Vilas Menon,
Changkyu Lee, Refugio A Martinez, Boaz P Levi, Carol L Thompson, et al. Cortecon: a temporal transcriptome
analysis of in vitro human cerebral cortex development from human embryonic stem cells. Neuron, 2014.

[39] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio. Graph
attention networks. ICLR, 2018.

[40] Li Wan, Matthew Zeiler, Sixin Zhang, Yann Le Cun, and Rob Fergus. Regularization of neural networks using
dropconnect. In ICML, 2013.

[41] Richard C Wilson, Edwin R Hancock, Elżbieta Pekalska, and Robert PW Duin. Spherical and hyperbolic
embeddings of data. IEEE transactions on pattern analysis and machine intelligence, 36(11):2255–2269, 2014.

[42] Felix Wu, Tianyi Zhang, Amauri Holanda de Souza Jr, Christopher Fifty, Tao Yu, and Kilian Q Weinberger.
Simplifying graph convolutional networks. In ICML, 2019.

[43] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks? ICLR,
2019.

[44] Zhilin Yang, William W Cohen, and Ruslan Salakhutdinov. Revisiting semi-supervised learning with graph
embeddings. ICML, 2016.

[45] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec. Graph
convolutional neural networks for web-scale recommender systems. In KDD, 2018.

[46] Hongyi Zhang, Sashank J Reddi, and Suvrit Sra. Riemannian svrg: Fast stochastic optimization on riemannian
manifolds. In NIPS, 2016.

12

[47] Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. In NeurIPS, 2018.

[48] Marinka Zitnik, Rok Sosic, Marcus W. Feldman, and Jure Leskovec. Evolution of resilience in protein interactomes
across the tree of life. Proceedings of the National Academy of Sciences.

13

A Review of Differential Geometry
We first recall some definitions of differential and hyperbolic geometry.

A.1 Differential geometry
Manifold. An d−dimensional manifold M is a topological space that locally resembles the topological space Rd
near each point. More concretely, for each point x onM, we can find a homeomorphism (continuous bijection with
continuous inverse) between a neighbourhood of x and Rd. The notion of manifold is a generalization of surfaces in
high dimensions.
Tangent space. Intuitively, if we think ofM as a d−dimensional manifold embedded in Rd+1, the tangent space
TxM at point x onM is a d−dimensional hyperplane in Rd+1 that best approximatesM around x. Another possible
interpretation for TxM is that it contains all the possible directions of curves onM passing through x. The elements of
TxM are called tangent vectors and the union of all tangent spaces is called the tangent bundle TM = ∪x∈MTxM.
Riemannian manifold. A Riemannian manifold is a pair (M,g), whereM is a smooth manifold and g = (gx)x∈M
is a Riemannian metric, that is a family of smoothly varying inner products on tangent spaces, gx : TxM×TxM→ R.
Riemannian metrics can be used to measure distances on manifolds.
Distances and geodesics. Let (M,g) be a Riemannian manifold. For v ∈ TxM, define the norm of v by ||v||g :=√
gx(v,v). Suppose γ : [a, b]→M is a smooth curve onM. Define the length of γ by

L(γ) :=
∫ b

a

||γ′(t)||gdt.

Now with this definition of length, every connected Riemannian manifold becomes a metric space and the distance
d :M×M→ [0,∞) is defined as

d(x,y) := infγ{L(γ) : γ is a continuously differentiable curve joining x and y}.

Geodesic distances are a generalization of straight lines (or shortest paths) to non-Euclidean geometry. A curve
γ : [a, b]→M is geodesic if d(γ(t), γ(s)) = L(γ|[t,s])∀(t, s) ∈ [a, b](t < s).
Parallel transport. Parallel transport is a generalization of translation to non-Euclidean geometry. Given a smooth
manifoldM, parallel transport Px→y(·) maps a vector v ∈ TxM to Px→y(v) ∈ TyM. In Riemannian geometry,
parallel transport preserves the Riemannian metric tensor (norm, inner products...).
Curvature. At a high level, curvature measures how much a geometric object such as surfaces deviate from a flat plane.
For instance, the Euclidean space has zero curvature while spheres have positive curvature. We illustrate the concept of
curvature in Figure 6.

A.2 Hyperbolic geometry
Hyperbolic space. The hyperbolic space in d dimensions is the unique complete, simply connected d−dimensional
Riemannian manifold with constant negative sectional curvature. There exist several models of hyperbolic space such
as the Poincaré model or the hyperboloid model (also known as the Minkowski model or the Lorentz model). In what
follows, we review the Poincaré and the hyperboloid models of hyperbolic space as well as connections between these
two models.

A.2.1 Poincaré ball model

Let ||.||2 be the Euclidean norm. The Poincaré ball model with unit radius and constant negative curvature −1 in d
dimensions is the Riemannian manifold (Dd,1, (gx)x) where

Dd,1 := {x ∈ Rd : ||x||2 < 1},

and
gx = λ2

xId,

14

Figure 6: From left to right: a surface of negative curvature, a surface of zero curvature, and a surface of positive
curvature.

where λx := 2
1−||x||22

and Id is the identity matrix. The induced distance between two points (x,y) in Dd,1 can be
computed as

d1
D(x,y) = arcosh

(
1 + 2 ||x− y||22

(1− ||x||22)(1− ||y||22)

)
.

A.2.2 Hyperboloid model

Hyperboloid model. Let 〈., .〉L : Rd+1 × Rd+1 → R denote the Minkowski inner product,

〈x,y〉L := −x0y0 + x1y1 + . . .+ xdyd.

The hyperboloid model with unit imaginary radius and constant negative curvature −1 in d dimensions is defined as the
Riemannian manifold (Hd,1, (gx)x) where

Hd,1 := {x ∈ Rd+1 : 〈x,x〉L = −1, x0 > 0},

and

gx :=

−1

1
. . .

1

 .

The induced distance between two points (x,y) in Hd,1 can be computed as

d1
L(x,y) = arcosh(−〈x,y〉L).

Geodesics. We recall a result that gives the unit speed geodesics in the hyperboloid model with curvature −1 [31]. This
result allow us to derive Corollary 3.1 and 3.2 for the hyperboloid manifold with negative curvature −1/K, and then
learn K as a model parameter in HYPERGCN.

Theorem A.1. Let x ∈ Hd,1 and u ∈ TxHd,1 unit-speed (i.e. 〈u,u〉L = 1). The unique unit-speed geodesic
γx→u : [0, 1]→ Hd,1 such that γx→u(0) = x and γ̇x→u(0) = u is given by

γx→u(t) = cosh(t)x + sinh(t)u.

15

Figure 7: Illustration of the hyperboloid model (top) in 3 dimensions and its connection to the Poincaré disk (bottom).

Parallel Transport. If two points x and y on the hyperboloid Hd,1 are connected by a geodesic, then the parallel
transport of a tangent vector v ∈ TxHd,1 to the tangent space TyHd,1 is

Px→y(v) = v− 〈logx(y),v〉L
d1
L(x,y)2 (logx(y) + logy(x)). (15)

Projections. Finally, we recall projections to the hyperboloid manifold and its corresponding tangent spaces. A point
x = (x0,x1:d) ∈ Rd+1 can be projected on the hyperboloid manifold Hd,1 with

ΠRd+1→Hd,1(x) := (
√

1 + ||x1:d||22,x1:d). (16)

Similarly, a point v ∈ Rd+1 can be projected on TxHd,1 with

ΠRd+1→TxHd,1(v) := v + 〈x,v〉Lx. (17)

In practice, these projections are very useful for optimization purposes as they constrain embeddings and tangent vectors
to remain on the manifold and tangent spaces.

A.2.3 Connection between the Poincaré ball model and the hyperboloid model

While the hyperboloid model tends to be more stable for optimization than the Poincaré model [27], the Poincaré model
is very interpretable and embeddings can be directly visualized on the Poincaré disk. Fortunately, these two models are
isomorphic (cf. Figure 7) and there exist a diffeomorphism ΠHd,1→Dd,1(·) mapping one space onto the other

ΠHd,1→Dd,1(x0, . . . , xd) = (x1, . . . , xd)
x0 + 1 (18)

and ΠDd,1→Hd,1(x1, . . . , xd) = (1 + ||x||22, 2x1, . . . , 2xd)
1− ||x||22

. (19)

B Proofs of Results

B.1 Hyperboloid model of hyperbolic space
For completeness, we re-derive results of hyperbolic geometry for any arbitrary curvature. Similar derivations can be
found in the literature [41].

16

Proposition 3.1. Let x ∈ Hd,K , u ∈ TxHd,K be unit-speed. The unique unit-speed geodesic γx→u(·) such that

γx→u(0) = x, γ̇x→u(0) = u is γKx→u(t) = cosh
(

t√
K

)
x +
√
Ksinh

(
t√
K

)
u, and the intrinsic distance function

between two points x,y in Hd,K is then

dKL (x,y) =
√
Karcosh(−〈x,y〉L/K). (4)

Proof. We know that the unique unit-speed geodesic γKx→u(.) in Hd,K must satisfy

γKx→u(0) = x and γ̇Kx→u(0) = u and
d

dt
〈γ̇Kx→u(t), γ̇Kx→u(t)〉L = 0 ∀t. (20)

Let γKx→u(t) = cosh(t√
K

)x +
√
Ksinh(t√

K
)u. We have γKx→u(0) = x and γ̇Kx→u(0) = u. Furthermore, since

u ∈ TxHd,K , we have 〈u,x〉L = 0 and for all t:

〈γKx→u(t), γKx→u(t)〉L = cosh2(t√
K

)〈x,x〉L +Ksinh2(t√
K

)〈u,u〉L

= −Kcosh2(t√
K

) +Ksinh2(t√
K

)

= −K.

Therefore, γKx→u(·) is a curve on Hd,K . Furthermore, we have γ̇Kx→u(t) = 1√
K

sinh(t√
K

)x+cosh(t√
K

)u and therefore

d

dt
〈γ̇Kx→u(t), γ̇Kx→u(t)〉L = d

dt
(1
K

sinh2(t√
K

)〈x,x〉L + cosh2(t√
K

)〈u,u〉L)

= d

dt
(−sinh2(t√

K
) + cosh2(t√

K
))

= 0.

Finally, γKx→u(.) verifies all the conditions in Equation 20 and is therefore the unique unit-speed geodesic on Hd,K
such that γKx→u(0) = x and γ̇Kx→u(0) = u.

Proposition 3.2. For x ∈ Hd,K , v ∈ TxHd,K and y ∈ Hd,K such that v 6= 0 and y 6= x, the exponential and
logarithmic maps of the hyperboloid model are given by

expKx (v) = cosh
(
||v||L√
K

)
x +
√
Ksinh

(
||v||L√
K

)
v
||v||L

, logKx (y) = dKL (x,y)
y + 1

K 〈x,y〉Lx
||y + 1

K 〈x,y〉Lx||L
.

Proof. We use a similar reasoning to that in Corollary 1.1 in [11]. Let γKx→v(.) be the unique geodesic such that
γKx→v(0) = x and γ̇Kx→v(0) = v. Let us define u := v

||v||L where ||v||L =
√
〈v,v〉L is the Minkowski norm of v

and

φKx→u(t) := γKx→v

(
t

||v||L

)
.

φx→u(t) satisfies,

φKx→u(0) = x and φ̇Kx→u(0) = u and
d

dt
〈φ̇Kx→u(t), φ̇Kx→u(t)〉L = 0 ∀t.

Therefore φKx→u(.) is a unit-speed geodesic in Hd,K and we get

φKx→u(t) = cosh(t√
K

)x +
√
Ksinh(t√

K
)u.

17

By identification, this leads to

γKx→v(t) = cosh
(
||v||L√
K

t

)
x +
√
Ksinh

(
||v||L√
K

t

)
v
||v||L

.

We can use this result to derive exponential and logarthimic maps on the hyperboloid model. We know that expKx (v) =
γKx→v(1). Therefore we get,

expKx (v) = cosh
(
||v||L√
K

)
x +
√
Ksinh

(
||v||L√
K

)
v
||v||L

.

Now let y = expKx (v). We have 〈x,y〉L = −Kcosh
(
||v||L√
K

)
as 〈x,x〉L = −K and 〈x,v〉L = 0. Therefore

y + 1
K 〈x,y〉Lx =

√
Ksinh

(
||v||L√
K

)
v
||v||L and we get

v =
√
Karsinh

(||y + 1
K 〈x,y〉Lx||L√

K

) y + 1
K 〈x,y〉Lx

||y + 1
K 〈x,y〉Lx||L

,

where ||y + 1
K 〈x,y〉L||L is well defined since y + 1

K 〈x,y〉Lx ∈ TxHd,K . Note that,

||y + 1
K
〈x,y〉Lx||L =

√
〈y,y〉L + 2

K
〈x,y〉2L + 1

K2 〈x,y〉
2
L〈x,x〉L

=
√
−K + 1

K
〈x,y〉2L

=
√
K

√
〈 x√

K
,

y√
K
〉2L − 1

=
√
Ksinh arcosh

(
− 〈 x√

K
,

y√
K
〉L
)

as 〈 x√
K
, y√

K
〉L ≤ −1. Therefore, we finally have

logKx (y) =
√
Karcosh

(
− 〈 x√

K
,

y√
K
〉L
) y + 1

K 〈x,y〉Lx
||y + 1

K 〈x,y〉Lx||L
.

B.2 Curvature
Lemma 1. For any hyperbolic spaces with constant curvatures −1/K,−1/K ′ > 0, and any pair of hyperbolic points
(u,v) embedded in Hd,K , there exists a mapping φ : Hd,K → Hd,K′ to another pair of corresponding hyperbolic
points in Hd,K′ , (φ(u), φ(v)) such that the Minkowski inner product is scaled by a constant factor.

Proof. For any hyperbolic embedding x = (x0, x1, . . . , xd) ∈ Hd,K we have the identity: 〈x,x〉L = −x2
0 +∑d

i=1 x
2
i = −K. For any hyperbolic curvature −1/K < 0, consider the mapping φ(x) =

√
K′

K x. Then we

have the identity 〈φ(x), φ(x)〉L = −K ′ and therefore φ(x) ∈ Hd,K′ . For any pair (u, v), 〈φ(u), φ(v)〉L =
K′

K

(
−u0v0 +

∑d
i=1 uivi

)
= K′

K 〈u,v〉L. The factor K′

K only depends on curvature, but not the specific embed-
dings.

Lemma 1 implies that given a set of embeddings learned in hyperbolic space Hd,K , we can find embeddings in
another hyperbolic space with different curvature, Hd,K′ , such that the Minkowski inner products for all pairs of
embeddings are scaled by the same factor K

′

K .
For link prediction tasks, Theorem 4.1 shows that with infinite precision, the expressive power of hyperbolic spaces

with varying curvatures is the same.

18

Name Nodes Edges Classes Node features
CORA 2708 5429 7 1433

PUBMED 19717 88651 3 500
HUMAN PPI 17598 5429 4 17

AIRPORT 3188 18631 4 4
DISEASE 1044 1043 2 1000

DISEASE-M 43193 43102 2 1000

Table 3: Benchmarks’ statistics

Theorem 4.1. For any hyperbolic curvatures −1/K,−1/K ′ < 0, for any node embeddings H = {hi} ⊂ Hd,K of

a graph G, we can find H ′ ⊂ Hd,K′ , H ′ = {h′i|h′i =
√

K′

K hi}, such that the reconstructed graph from H ′ via the
Fermi-Dirac decoder is the same as the reconstructed graph from H , with different decoder parameters (r, t) and
(r′, t′).

Proof. The Fermi-Dirac decoder predicts that there exists a link between node i and j iif
[
e(dK
L (hi,hj)−r)/t + 1

]−1
≥ b,

where b ∈ (0, 1) is the threshold for determining existence of links. The criterion is equivalent to dKL (hi,hj) ≤
r + t log(1−b

b).
Given H = {h1, . . . ,hn}, the graph GH reconstructed with the Fermi-Dirac decoder has the edge set EH ={

(i, j)|dKL (hi,hj) ≤ r + t log(1−b
b)
}

. Consider the mapping to Hd,K′ , φ(x) :=
√

K′

K x. LetH ′ = {φ(h1), . . . , φ(hn)}.
By Lemma 1,

dK
′

L (φ(hi), φ(hj)) =
√
K ′arcosh

(
−K

′

K
〈hi,hj〉L/K ′

)
=
√
K ′

K
dKL (hi,hj). (21)

Due to linearity, we can find decoder parameter, r′ and t′ that satisfy r′ + t′ log(1−b
b) =

√
K′

K (r + t log(1−b
b)). With

such r′, t′, the criterion dKL (hi,hj) ≤ r+ t log(1−b
b) is equivalent to dK

′

L (φ(hi), φ(hj)) ≤ r′+ t′ log(1−b
b). Therefore,

the reconstructed graph GH′ based on the set of embeddings H ′ is identical to GH .

C Experimental Details

C.1 Dataset statistics
We detail the dataset statistics in Table 3. We will release datasets download links at https://github.com/ines-
chami/hypergcn.

C.2 Training details
Here we present details of HYPERGCN’s training pipeline, with optimization and incorporation of DropConnect [40].
Parameter optimization. Recall that linear transformations and attention are defined on the tangent space of points.
Therefore the linear layer and attention parameters are Euclidean. For bias, there are two options: one can either define
parameters in hyperbolic space, and use hyperbolic addition operation [10], or define parameters in Euclidean space, and
use Euclidean addition after transforming the points into the tangent space. Through experiments we find that Euclidean
optimization is much more stable, and gives slightly better test performance compared to Riemannian optimization, if
we define parameters such as bias in hyperbolic space. Hence different from shallow hyperbolic embeddings, although
our model and embeddings are hyperbolic, the learnable graph convolution parameters can be optimized via Euclidean
optimization (Adam Optimizer [18]), thanks to exponential and logarithmic maps. Note that to train shallow Poincaré
embeddings, we use Riemannian Stochastic Gradient Descent [4, 46], since its model parameters are hyperbolic. We
use early stopping based on validation set performance with a patience of 100 epochs.

19

https://github.com/ines-chami/hypergcn
https://github.com/ines-chami/hypergcn

Drop connection. Since rescaling vectors in hyperbolic space requires exponential and logarithmic maps, and is con-
ceptually not tied to the inverse dropout rate in terms of re-normalizing L1 norm, Dropout cannot be directly applied in
HYPERGCN. However, as a result of using Euclidean parameters in HYPERGCN, DropConnect [40], the generalization
of Dropout, can be used as a regularization. DropConnect randomly zeros out the neural network connections, i.e.
elements of the Euclidean parameters during training time, improving the generalization of HYPERGCN.
Projections. Finally, we apply projections similar to Equations 16 and 17 for the hyperboloid model Hd,K after each
feature transform and log or exp map, to constrain embeddings and tangent vectors to remain on the manifold and
tangent spaces.

20

	Introduction
	Related Work
	Background
	Hyperbolic Graph Convolutional Networks
	Mapping from Euclidean to hyperbolic spaces
	Feature transform in hyperbolic space
	Neighborhood aggregation on the hyperboloid manifold
	HyperGCN architecture
	Trainable curvature

	Experiments
	Experimental setup
	Results
	Analysis

	Conclusion
	Review of Differential Geometry
	Differential geometry
	Hyperbolic geometry
	Poincaré ball model
	Hyperboloid model
	Connection between the Poincaré ball model and the hyperboloid model

	Proofs of Results
	Hyperboloid model of hyperbolic space
	Curvature

	Experimental Details
	Dataset statistics
	Training details

